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Abstract
In this paper, we study the higher-order generalized Ginzburg–Landau model which contributes
to describing the propagation of optical solitons in fibers. By means of the Hirota bilinear
method, the analytical solutions are obtained and the effect of relevant parameters is analyzed.
Modulated by the near parity-time-symmetric potentials, the nonlinear modes with 5% initial
random noise are numerically simulated to possess stable evolution. Furthermore, the evolution
of nonlinear modes is displayed through the adiabatical change of some parameters. The
investigation of the present work is intended as a contribution to the work for the higher-order
generalized Ginzburg–Landau model.
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1. Introduction

Optical solitons, which have the unique characteristic that
waveform and velocity remain unchanged over long distant
propagation, have been paid increasing attention in recent years
[1–5]. It is found that the formation mechanism of optical
solitons during the propagation process is the balance between
group velocity dispersion and the self-phase modulation effect
in the anomalous dispersion region [1]. To describe the pro-
pagation of optical solitons in optical fibers, the nonlinear
Schrödinger equation (NLSE) known as an important and
universal model has been developed with some generalizations
and soliton solutions presented [6–13]. Nevertheless, the gen-
eralized Ginzburg–Landau equation (GGLE), which is widely
applied in such fields as superconductivity, liquid crystal,
Bose–Einstein condensate, can be considered as a dissipative
generalization of NLSE [14–17]. Different analytical and
numerical methods have been applied to the GGLE, while
various novel solutions including the pulsating, erupting and

creeping solitons have been obtained [18–23]. By means of
numerical simulations, the stability of various solutions has
been proved [24, 25]. For a wider application prospect, the
model has been extended to higher-dimension and higher-order
cases [26–30]. Moreover, parity-time ( ) symmetric poten-
tials have been introduced to the GGLE with several interesting
results [25, 31, 32]. Though different  -symmetric behaviors
have been studied theoretically or observed in experiments
[33–38], limited research has been done which is relevant to
the higher-order GGLE. In previous work, we have investi-
gated the fourth-order GGLE with quintic nonlinearities and
near  -symmetric structures [39].

In this paper, we will study the GGLE with third-order
dispersion and nonlinear gradient:
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where u(x, t) represents a complex wave envelope, x denotes
the propagation distance and t is the time. The subscripts
denote the partial derivative with respect to x or t and i
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represents the imaginary unit. α(x), U(x, t) and β(x, t) are
complex functions that can be assumed as α= α1+ iα2,
U= V+ iW, β= β1+ iβ2. α(x), U(x, t), β(x, t), σ(t) and γ(t)
can describe the variable effect of group velocity dispersion,
gain or loss, self-phase modulation, third-order dispersion and
nonlinear gradient terms, respectively [18, 25, 30, 40].

There are three special cases that can be reduced by
equation (1).

(1) When α2(x)=W(x, t)= β2(x, t)= 0, equation (1) turns into
the third-order NLSE. It has been used to describe the
propagation of ultra-short pulses and optical solitons in
fibers in [6, 7, 41]. Some exact solutions and the
corresponding abundant structures have been obtained
[7], and the linear stability of solitons has been studied [6].

(2) When σ(t)= γ(t)= ρ(t)= 0, equation (1) can be reduced
to the second-order GGLE. The analytical solutions have
been derived by means of the Hirota bilinear method
[21, 25, 42, 43]. The stability of soliton has been
analyzed via numerical simulations in [25, 42].

(3) When σ(t)= γ(t)= ρ(t)= 0 and U(x, t) is  -symmetric.
Equation (1) is changed into the GGLE with  -sym-
metric potential, which has been less investigated so far
except [25]. The effect of near  -symmetric potentials
on nonlinear modes has been reported [32].

The rest of this paper is arranged as follows. In section 2, the
bilinear form of equation (1) is derived under some constraints.
In addition, soliton solutions of equation (1) with constant and
variable coefficients are obtained respectively. In section 3, the
stable transmission of nonlinear modes is verified through
numerical simulations with 5% perturbations. The effect of near
 -symmetric potentials is discussed with relevant figures
illustrated, and the adiabatic change of some parameters is
considered. Finally, the conclusions are given in section 4.

2. Analytical solutions of equation (1)

The analytical solutions of equation (1) are derived by the
Hirota bilinear method. Through variable transformation
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with the real function F and complex G, and the constraint
αγ= 3σβ, the bilinear equations of equation (1) are written as

[ ] ·
· ∣ ∣ ( )

D D U D D G F

D F F G

i i i 0,

0. 3

t x x x

x

2 3

2 2

a s r

a b

+ + + + =

- =

The Hirota operator is defined by [44]
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We expand G and F in power series of ò as
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where ò is a small parameter, Gi(i= 1, 3, 5, K) and Fj( j= 2,
4, 6, K) are functions of x and t to be determined.

In this section, we study two cases of constant and
variable coefficients. For the sake of calculation, we set ò= 1.
The analytical expression of a single soliton solution for
equation (1) is

( ) ( )u x t
G

F
,

1
. 61

2
=

+

Case 1:
Under the constraints β1= c0α1, β2= c0α2,W k1
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where αi(i= 1, 2), c0, k1 are real constants, we substitute
equation (5) into equation (3) and collect the coefficients of ò
with the same power. Then we can get
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i.e. the soliton solution of equation (1) with constant coeffi-
cients, where mi, wi(i= 1, 2), ρ, σ, V, W are real constants.

Case 2:
Similarly, we set β1(x, t)= 2c0(t)α1(x), β2(x, t)= 2c0(t)α2(x),
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where mi (i= 1, 2), k1 are real constants. Substituting Expres-
sions (8) into (6), we get the analytical soliton solution likewise.

By modulating dispersion and gain or loss terms, we
illustrate their effect of them on the structure and propagation
of soliton in figure 1. In figure 1(a), when σ, ρ and W1(t) are
chosen as sine functions, the amplitude of the soliton varies
with time periodically. Once the dispersion terms are taken as
aperiodic functions like exponential functions, the amplitude
is still periodic except for a phase shift around t= 0.
Obviously, the periodicity of amplitude is only related to the
gain or loss term and the dispersion terms affect the struc-
tures. As shown in figure 1(c), the value of k1 is adjusted.
When the value of k1 reduces to 0.5, the maximum amplitude
decreases and the structure of soliton has changed.
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3. Numerical simulations of equation (1)

The stability of solitary wave solutions plays a crucial role in
practical applications. Due to the non-integrability of equation (1),
the stability of solitary waves propagating in non-Kerr nonlinear
media can not be guaranteed [9]. So the stability will be tested in
this section via numerical simulations with a perturbation of 5%
initial random noise. Furthermore, the modified squared-operator
and pseudospectral methods are used in the numerical simulations
[45]. Under near -symmetric potential, the equation (1) can be
rewritten as
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where σ, γ, ρ, αi, βi (i= 1, 2) are real constants and V+ iW
denotes the near  -symmetric potential.

The nonlinear mode of equation (9) can be defined as

( ) ( ) ( )u x t x, e , 10tif= m-

where μ is a real propagation constant. We will first study the
stability of nonlinear modes with the effect of the last three
terms ignored, and reduce equation (9) to the second-order

GGLE:
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In the last subsection, these parameters will be considered
again through adiabatical excitation of them.

3.1. Nonlinear modes under near  -symmetric Scarf-II
potential

We introduce the near  -symmetric Scarf-II potential [32]
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2
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where the value of real constants V0, W0 and W1 can be
modulated to obtain stable nonlinear modes.

The power of nonlinear mode is defined as P =
∣ ( )∣x t x, d2ò f

-¥

+¥
. Figure 2(a) shows the result that stable

evolution does not exist when the value of W1 approaches
zero because the potential turns into  -symmetric Scarf-II
potential. The power decreases obviously with increasing the
value of β2, but α2 has less effect on the power. The two
curves with different values of α2 intersect at W1= 2.8.

Figure 1. Structures of soliton solution with variable coefficients. Parameters are chosen as: (a) ( ) ( ) ( ) ( )W t t t t t0.2 sin 0.5 , sin1 r s= = = ,
(b) ( ) ( ) ( ) ( )W t t t t0.2 sin 0.5 , e t

1
2r s= = = - , (c) ( ) ( ) ( ) ( )W t t t t t k0.2 sin 0.5 , sin , 0.51 1r s= = = = and other parameters are fixed as 1.

Figure 2. Effect of parameters on the power of nonlinear modes under near  -symmetric Scarf-II potential. (a) α1 = β1 = V0 =W0 = 1, (b)
α1 = β1 = β2 = 1 and α2 =−1.
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Symmetric curves with respect to W0= 0 are shown in
figure 2(b). Moreover, they attain the lowest power at the
point W0= 0 simultaneously. By the change of V0 or W1, the
lowest power can be adjusted.

The stable nonlinear modes under near  -symmetric
Scarf-II potential are shown in figures 3(a) and 3(d) with 5%
initial perturbations. Increasing the value of W1 to 5, the
amplitude becomes larger and the nonlinear mode has a
narrower width. That is to say, the energy becomes more
concentrated than before. At the same time, the imaginary
part of the nonlinear mode takes up a larger proportion.

3.2. Nonlinear modes under near  -symmetric δ-signum
potential

Equation (11) with near  -symmetric δ-signum potential is
discussed as follows. The potential can be expressed as
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p

-
, and a is set

as 0.01 for calculation expediently [46]. It is found that the

two curves with different values of α2 are nearly parallel to
each other in figure 4(a). Figure 4(b) illustrates the effect of
near  -symmetric δ-signum potential. When V0= 0.4, the
nonlinear modes exist even if W1= 0. At the points in blue
solid and red dashed curves, the potential reduces to  -
symmetric δ-signum potential, which satisfies that V(x)= V
(−x) and W(−x)=−W(x).

Next, we consider the evolution of nonlinear modes with
the potential. In the numerical simulations, 5% initial random
noise is added likewise. Figures 5(a), (d) and (g) show the
stable evolution of peakons, while W0 affects the amplitude
and period of oscillation. In contrast to figure 5(a), the peakon
maintains a certain value and does not oscillate when the
value of V0 increases to 1 in figure 5(g).

3.3. Adiabatic excitation and evolution of the nonlinear modes

The adiabatic change of parameters in equation (9) with near
 -symmetric Scarf-II potential will be considered. The
‘switch-on’ function in [47] is used so that the parameters can
be smoothly adjusted:

Figure 3. Stable evolution of nonlinear modes under near  -symmetric Scarf-II potential. (a), (b), (c) W1 = 2, (d), (e), (f) W1 = 5. α2 =−4
and other parameters are fixed as 1.
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Figure 4. Effect of parameters on the power of nonlinear modes under near  -symmetric δ-signum potential. (a) α1 = β1 = V0 =W0 = 1,
(b) α1 = β1 = β2 = 1 and α2 =−1.

Figure 5. Stable evolution of nonlinear modes under near  -symmetric δ-signum potential. (a), (b), (c) V0 = 0.4, W0 = 2, (d), (e), (f)
V0 = 0.4, W0 = 1.5, (g), (h), (i) V0 = 1, W0 = 2. Other parameters are α1 = β1 = β2 = 1, α2 =−1, W1 = 5.
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The process can be divided into two stages: the excitation
stage (0< t< 500) and the propagation stage (500� t�
1500). In the excitation stage, ξ changes constantly from ξ(ini)

to ξ(end) and remains unchanged in the propagation stage.
We generate the parameters σ, γ, ρ, V0, W0 and W1 by ξ(t).
When ξ(ini)= ξ(end), the function ξ(t) turns into a constant.

Figures 6(a), (c) and (e) display the stable excitation and
evolution of the nonlinear modes. With σ, γ and ρ changing
from 0 to 1, the amplitudes of nonlinear modes are all
decreasing. Then we excite W0 and W1 simultaneously to
meet  -symmetric Scarf-II potential in figure 6(e). In
contrast with figure 6(a), the initial condition is the same and

Figure 6. Adiabatic excitation and evolution of the nonlinear modes under near  -symmetric Scarf-II potential. (a, b) W0 = 0, W1 = 1, (c),
(d) W0 = 0, W1 = 0.5, (e), (f) ( )W 00

ini = , ( )W 20
end = , ( )W 11

ini = , ( )W 01
end = and other parameters are α2 =−1, α1 = β1 = β2 = V0 = 1,

σ(ini) = γ(ini) = ρ(ini) = 0, σ(end) = γ(end) = ρ(end) = 1.
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the final state changes greatly. In addition, the amplitude
changes rapidly during the excitation stage for a short time.

4. Conclusions

In this paper, we study the higher-order GGLE, i.e.
equation (1), with variable parameters and near  -sym-
metric potentials. Under some constraints, the analytical
solutions of equation (1) have been derived by the Hirota
bilinear method. And several structures of solitons have also
been illustrated in figures by the modulation of corresponding
parameters. With the near  -symmetric Scarf-II and δ-
signum potentials introduced, stability of the nonlinear modes
is proved via numerical simulations. Through the process of
adiabatic excitation, stable nonlinear modes are also dis-
played. The results obtained might advance further investi-
gations on generalized Ginzburg–Landau models by means of
analytical and numerical methods. These new findings of
nonlinear modes in the generalized Ginzburg–Landau model
might be potentially applied to hydrodynamics, optics and
matter waves in Bose–Einstein condensates.
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